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Synopsis 

The transport of a solute by diffusion into a glassy polymer can lead to swelling of the 
material. For certain types of polymers, a sharp interface is formed between the swollen region 
and the glassy core. When the density of the swollen material is much smaller than the density 
of the glass, a significant convective mass-average velocity is generated within the sample. 
Previous models have neglected the role this convection plays in solute transport and in the 
proper calculation of the sample dimensions as a function of time. In this paper, we study the 
contribution of convective terms to the solute transport process, including the motion of the 
swollen polymer/solution interface. We also compute the eulerian strains that result from the 
calculated velocity fields and the stresses that would be generated if a linear viscoelastic model 
is used as a constitutive equation relating the stress to the strain. We show that serious errors 
can be generated in the calculations if convective terms are neglected. Furthermore, a com- 
parison of the strains and stresses acting on the polymer with those acting on the mixture of 
solute and polymer shows that they can be significantly different. The stresses and strains 
acting on the polymer alone offer the most rational physical picture of the material deformation. 

INTRODUCTION 

When glassy polymers are exposed to both gaseous and liquid solutes, the 
resulting transport of solute into the matrix can lead to anomalous diffusion 
effects, so called because they differ from the expected behavior if the dif- 
fusion were purely fickian in nature. As the solute is absorbed into the 
polymer, swelling takes place, and depending on the mechanical and phys- 
ical nature of the polymer-solute pair, a sharp front can be generated be- 
tween the swollen and glassy regions.l-* The swelling and front formation 
result in curves of total mass of solute absorbed as a function of time, which 
deviate significantly from the expected square root of time behavior for 
fickian diffusion with a constant diffusivity. As the fronts meet, the rate of 
mass transport is often accelerated, and this is what distinguishes the super 
case I1 from the case I1 anomalous diffusion. 

Even though the phenomenon is well documented, efforts to model the 
behavior of the diffusion and swelling process using physicochemical prin- 
ciples have led to various different approaches. For certain classes of pol- 
ymers, it has been shown that the swollen polymer/glassy core front velocity 
can be related to the rate of crazing and its dependence on the stress acting 
at the i n t e r f a ~ e . ~  The stress acting on the glassy polymer has been related 
to the osmotic pressure of the solute, and some effort has been made to 
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include the effect of stresses normal to the diffusion direction by performing 
an overall force balance on the sample. In this type of model, the existence 
of a front is assumed a priori, and the remaining effort goes into generating 
a suitable constitutive equation for the front velocity and into calculating 
the diffusive flux in the swollen region. These moving front modelP7 have 
been successful in explaining many of the observed phenomena, including 
super case I1 behavior. 

Other researchers have attempted to develop models that would predict 
whether a front is formed.* In this approach, the tendency of the solute to  
swell the polymer is assumed to encounter a viscous resistance to the de- 
formation. Depending on the magnitude of this resistance, the concentration 
profile in the solute can be either broad or sharp, so that a swelling front 
can be observed. The role of stresses and strains on polymer deformation 
during diffusion is receiving increasing attention, and recently elastic models 
have been developed to  relate the stress in the polymer to  strains generated 
because of deformations and the presence of the ~enetrant.~,lO Petropolous 
and Roussisl1.l2 have been able to predict front formation simply by a con- 
centration-dependent diffusion coefficient with relaxation. 

In this paper, we extend the swelling front models by including a phe- 
nomenon that has been overlooked in all previous analysis of solute trans- 
port in glassy polymers. When the density of the swollen polymer is much 
less than the density of the glass, a significant convective mass-average 
velocity can be generated within the sample. This convective velocity in 
turn will affect the transport of solute in two different ways. First, it will 
make the convective flux in the species continuity equation of the same 
order of magnitude as the diffusive flux term and thus nonnegligible. Second, 
it will make the velocity of the external swollen polymer/solvent front be 
as fast as that of the swollen polymer/glassy core front velocity. The cal- 
culations will show that for reasonable parameter values significant errors 
can be generated in estimating the sample thickness if these effects are 
neglected. 

In the model used in this paper, we consider the diffusion coefficient to 
be a function of concentration only, and we use a constitutive equation for 
the front velocity that depends only on the solute concentration at the 
glass/swollen polymer interfa~e. '~  Of course, this automatically decouples 
the effect of the stress fields on the diffusive fluxes. The problem remains 
mathematically parabolic, and as such, one cannot expect any wavelike 
behavior in the concentration or the diffusive fluxes. Experimentally one 
can in fact find situations in which the mass of solute absorbed can oscillate 
with time. This is apparently due to relaxation effects in the polymer. We 
also consider the motion of the polymer to  be one dimensional so that the 
continuity equation for total mass and the solute species continuity equation 
determine both the velocity and solute concentration profiles. These sim- 
plifications were made so that the computed velocity fields could be used to 
calculate the transient strain field in the sample as well as the local state 
of stress. The stress calculation is based on a linear viscoelastic model with 
constant parameter values, and it will illustrate very effectively that, in 
this two-component system, there exists a significant difference between 
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stresses and strains acting on the polymer only and stresses and strains 
based on the total or mass-average velocity gradients. This is an issue that 
has received little attention in the past but that may be a crucial consid- 
eration in the development of constitutive equations relating diffusion fluxes 
to states of stress and strain in the system. 

SOLUTE CONCENTRATION AND VELOCITY FIELDS 

Mathematical Formulation 

Consider a slab of initial thickness 26 and infinite in they and z directions 
immersed in a solute at time t = 0, as shown in Fig. 1. As the solute diffuses 
into the polymer, a swelling front is generated whose position is x = x l ( t )  
and whose velocity is - w,(t). In the meantime, the swollen polymer/solution 
interface is found at x = x2( t ) ,  and it moves at a velocity w,(t). We need 
only concern ourselves with the diffusion process along the positive x di- 
rection with x l ( t )  < x < x2(t)  since the concentration field will be symmetrical 
aboutx = 0. 
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Fig. 1. Coordinate system used for the analysis. 
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The density of the polymer-solute mixture will depend on the local con- 
centration of solute, so that 

where ps and pG are the pure solute and glass densities. We assume that 
the local value of the solute concentration will automatically fix the local 
density so that the variation of the solute concentration with position and 
time will generate a mass-average velocity according to the continuity equa- 
tion for total mass: 

where u is the x component of the mass-average velocity. If the diffusion 
coefficient is only a function of concentration, 

9 = W w )  (3) 

the solute species continuity equation will govern the solute concentration 
field in the sample 

Thus, constitutive equations (1) and (3) and the transport equations (2) and 
(4) are sufficient to calculate u(x, t)  and w (x, t)  once proper boundary con- 
ditions are imposed at  x = x, ( t )  and x = x2(t) .  

At x = xl(t), the concentration of solute in the glass is taken to be zero 
so that the mass flux of solute in the rubber must be equal to  the mass flux 
of solute convected away from the interface by the front velocity. Thus, the 
jump mass balance on solvent at x = x,(t) becomes 

where us is the x component of the velocity of the solute and uf is the x 
component of the front velocity. Since the glass is taken to be nondeformable, 
a jump total mass balance at x = xl(t) results in 

u = U f  (1 - ;) x = x , ( t )  

Combining eqs. (5) and (61, we have 

(6) 

p 9 a w  
U f  = - --- x = xl(t) 

PG ax 
(7) 
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The front velocity we take to be a linear function of the concentration of 
solute13: 

U f  = - w1 = - k ( 0  - 0) (8) 

so eq. (7) becomes 

p 9 aw 
k(w - 0) = - - - x = x,(t) 

PG ax 
(9) 

This is the boundary condition for w at x = x,(t). The concentration w at x 
= x,(t) is computed from the field equation and the boundary condition in 
eq. (9). This concentration is time dependent, and as a result, the front 
velocity uf is also time dependent through eq. (8). Of course, the location 
x,(t) changes according to the kinematic condition 

At the surface x = x&), we can use the fact that the polymer does not 
dissolve in the solute to derive an equation analogous to eq. (5) from the 
jump mass balance on the polymer at  x = x,(t): 

9 aw 
up = w2 = u + -- 

1 - w a x  x = x,(t) 

Since the location of the swollen polymer/solute interface is given by 

(11) 

then eqs. (11) and (12) serve to  locate the point x&). At the rubberholute 
interface the solute concentration is taken to  be the constant 

w = w, (13) 

For computational purposes, we calculate the density of the rubber and the 
diffusion coefficient by the equations 

1 (1 - 0) w 
- + -  

P PG Ps 
(14) 

and 

where 9, is the diffusion coefficient when w = 0,. Note that the density 
decreases with increasing solute concentration but the diffusivity increases 
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if p > 0. The total thickness of the swollen layer is X(t), and this can be 
easily calculated: 

We can facilitate the necessary computations if we put the problem in 
dimensionless form and transform the equations to  a frame moving with 
the rubber/solute interface. In this new frame that surface remains fixed, 
and the only moving boundary is the glasshbber swelling front. As a result, 
consider the transformation 

It is not hard to show that derivatives of any function $(x, t)  can be related 
to derivatives in the new coordinate system by the relations 

The following characteristic quantities may be used to define the dimen- 
sionless variables: 

6 = characteristic length (original half-width of sample) 

vo = k(w,  - 6) = characteristic velocity (front 

velocity when w = w,) 
(19) 

to = 6/vo = characteristic time (time for fronts to  

meet at center of solid if w = w,) 

pG = characteristic density (density of glass) 

The dimensionless variables are defined according to the relations 
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(20) 

Upon transformation to the new coordinate system and using the definitions 
in eq. (20), the governing equations and boundary conditions for the con- 
centration and dimensionless velocity are given in Table I. Several impor- 
tant dimensionless parameters arise whose values affect the overall system 
behavior. These are defined by the equations 

uo 6 Pe = - 
grn 

(21) 

A W  = W, - 6 

where Pe is the (penetration number). It is clear that to obtain numerical 
results for the equations in Table I we need to fix the values of Pe, R, Aw, 
6, and p. In all our computations we have chosen = 3 and 6 = 0.05. 
This leaves Pe, R, and A w  as the parameters to  be varied. The penetration 
number Pe is the ratio of the front velocity to the velocity for diffusion. As 
Pe + m, the concentration profiles should be very steep in the rubber phase; 
as Pe -+ 0, the concentration of solute becomes nearly uniform in the swollen 
layer. The parameter R is a measure of the overall capacity of the system 
to generate velocity gradients. As R + 1, the rubber and the glass will have 
the same density and the mass-average velocity remains constant with po- 
sition according to the continuity equation. As R -+ 0, there is a significant 
density change due to swelling. The parameter A w  is a measure of the 
capacity of the polymer for absorbing solute. 

Once the u* and w fields are known, we can calculate several macroscopic 
variables associated with the swelling process. Of course, the dimensionless 
thickness of the swollen layer is X*( t* ) .  The total amount of solute absorbed 
after time t per unit area of sample is 



3634 SARTI, GOSTOLI, RICCIOLI, AND CARBONELL 

TABLE I 
Dimensionless Form of the Transport Equations and Boundary Conditions for the Velocity 

and the Concentration Fields 

Overall continuity equation: 

Solute continuity equation: 

aw a 
P* [$ + cw; - u * , $ ]  = --+ (p*.*-$) 

Constitutive equations: 

w 
- (1 - w) + - 1 _ -  

P* R 

Boundary conditions: 

q * = o  w = w ,  

q* = A*(t*) 
dA* 
dt* 
- = wT + w; 

u* = - w f ( l  - p*- l )  

*a aw w* - + e- 
w aq* 1 -  

Transforming to the moving frame and making the expression dimension- 
less, we find 

where MG is the mass of glass per unit area of sample pG 6. The distance 
penetrated by the swelling front is defined as A, = 6 - x,W, and it is a 
measure of the velocity of the rubbedglass front. In dimensionless form we 
can define this penetration depth as 

where the right-hand side may be computed from wf. 
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In addition to these quantities we can also compute the velocity associated 
with the polymer molecules in the rubber phase. The total or mass average 
velocity is defined as 

u = ous + (1 - w)up (24) 

and according to Fick’s law of diffusion, 

Combining eqs. (24) and (25), we have 

0 am 
up = - 9- 

1 - 0  ax (26) 

so that transforming into the moving frame and putting the velocity in 
dimensionless form we have 

From a knowledge of the concentration field it is then possible to calculate 
the velocity of the polymer. Note that the polymer will move (swell) even 
if the convective terms are zero (namely, even if u* = 0). Of course, once 
the mass-average velocity and the polymer velocity are known, it becomes 
possible to calculate the associated strains. However, we will reserve the 
analysis of resulting stresses and strains in the polymer and in the mixture 
until a later section and turn our attention to the results obtained from the 
solution of the equations in Table I. 

RESULTS FOR o and v* 

As was mentioned in the previous section, the problem as posed in Table 
I contains the parameters Pe, R, A q 6 ,  and p. In all our calculations we 
have let p = 3 and 6 = 0.05, chosen arbitrarily. In this way we can 
concentrate on the effects of the penetration number (Pe), the density ratio 
R ,  and the absorptive capacity Ao on the rate of transport and swelling. In 
choosing the magnitude of these parameters, we can rely on typical orders 
of magnitude for a polymer-solute pair, such as n-hexane-polystyrene, where 
0.6 I ps I 1 g/cm3 depending on the pressure, 0.9 5 pc 5 1.2 g/cm3, 
5 9 5 10-9cm2/s, 0.15 5 w, 5 0.40,0= 0.05, and k = c d s .  A typical 
initial sample width would be 6 = 1 mm. These values help us t o  provide 
a reasonable range for the required parameters: 

I Pe I lo2 0.6 5 R 5 1 0.1 I Ao I 0.35 

Clearly, the penetration number is the quantity subject to  the largest pos- 
sible variation. 
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The numerical method used was similar to  that described by Gostoli and 
Sarti.5 The equations were finite differenced in an equally spaced grid, and 
an iterative procedure was followed in order to compute time increments, 
concentration profiles, and velocity profiles. 

In Fig. 2 we see how the thickness of the rubber or swollen polymer layer 
changes with time, as well as the time variation of the penetration depth. 
The values of the parameters are shown in the table in the figure. It is clear 
that as the ratio of the densities R increases, there is less of a tendency of 
the material to swell (smaller values of A* at  a fixed time). Even though 
when p* = 1 (the glass density is equal to  the rubber density) the velocity 
u* = 0, there is still swelling since u,* # 0. This can be seen from eq. (271, 
since the existence of up* does not depend on the existence of u*. However, 
as R increases, the velocity of the glass/swollen polymer front decreases. As 
a result, the difference between the curves of A* and A8 increases as the 
density difference between glass and polymer increases and as the capacity 
for solute adsorption increases. The difference A* - A 8  can be easily related 
to the total sample thickness 

When Pe increases, the diffusional resistance is high, and this lowers the 
concentration of solute near the swelling front. The lower concentration 
causes the front velocity to  decrease and less swelling to occur. This explains 
the much smaller swelling thickness and overall sample thicknesses for case 
4 in Fig. 2 compared with case 3. 

Case R = 1 is of interest because, as shown in Table I, u* = 0. This is a 
case for which there are no convective terms in the equation. If one compares 
curves in which R = 1 to curves in which R < 1 in Fig. 2, we see that the 

I I 
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XG.X 1 .  
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Fig. 2. Swollen layer thickness A* (---) and penetration depth AT: (-------) for various 

parameter valves. 
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R = 1 case shows much less swelling. Thus, the influence of convective 
terms is, in general, to increase the rate of swelling of the material. In Fig. 
3, the weight uptake M* is shown for various values of Pe, Aw, and R. Note 
that they all exhibit case I1 behavior, in which the mass uptake is a linear 
function of t* instead of a linear function of fl. When the penetration 
number increases, the mass uptake decreases significantly because of the 
higher diffusional resistance, regardless of the value of R. Also, the larger 
the value of Aw, the larger is the weight uptake per unit time, as can be 
expected. For all the cases shown in Figs. 1 and 2, the concentration profiles 
have the expected monotonically decreasing shapes from w, at q* = 0 to a 
lower value of w at q* = A*(t*). A few examples are shown in Fig. 4. 

t' 
Fig. 3. Weight uptake as a function of time for various parameter values 

0.4 I 

.6 5. .25 

0.0 0.5 1 .o 1.5 

tl' 
Fig. 4. Typical solute concentration profiles. For each set of parameter values there are 

two curves corresponding to different t* values. 
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In agreement with our previous discussion on the influence of the Pe 
number, we see that, for small penetration numbers, the drop in the con- 
centration through the rubber phase is relatively small. However, for large 
values of the penetration number, there is a significant difference between 
the surface concentration and the concentration at the swelling front. In 
Fig. 4, for each Pe value there are two curves corresponding to the concen- 
tration profiles for two different times. These curves show that the rate of 
penetration of the swelling front is strongly dependent on the concentration 
field. The front velocity is governed by the concentration of solute at the 
glasshubber interface according to eq. (8). 

It is of interest to take a look at the profiles for the mass-average velocity 
as well as the polymer velocity. In Figs. 5 and 6 we have these quantities 
plotted as a function of q* for various parameter values at two different 
values of time t*. Note that the polymer velocity is always positive and 
decreases in the direction of the rubberlglass front. This means that the 
polymer expands outward from the center of the sample and its velocity is 
higher as the swollen polymer/solution interface is reached. However, the 
mass-average velocity seems to go through a maximum, which is more 
obvious the larger the value of the penetration number (or the larger the 
diffusional resistance). From eq. (27) we can see that, as o increases toward 
the outer edge of the sample, the fraction w/( l  - w), as well as 9 * becomes 
larger. Since dw/dq* is negative and nearly constant, then up* increases mon- 
otonically as q* goes to zero. The maximum in u* is less obvious. However, 
note that eq. (21, the total continuity equation, may be rewritten as 

- 

i 

)3 - 
I I 1 

dU 1 ap ao 

dX P aw 
_ -  - - --(% + u z )  

' I .6 

I I 

11' 
Fig. 5. Mass-average velocity profiles. There are two curves for each set of parameter values, 

corresponding to two different t* values. 
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11' 
Fig. 6 .  Polymer velocity profiles. There are two curves for each set of parameter values, 

corresponding to two different t* values. 

so that transforming to the moving frame and making it dimensionless we 
obtain 

At q* = 0, d o * l d t  = 0, and wg - u* = - %*/(l - w) doldq* (see Table I). 
Thus the derivative of u* at q* = 0 is given by 

At q* = A* the term au*ldq* can be either positive or negative, depending 
on the value of p*, %*, and the other parameters. In Fig. 4 we see that the 
result of eq. (28) is verified, even though it is not possible to make a direct 
prediction of when u* will go through a maximum as a function of q*. 

In summary, we see that the influence of the convective terms in the 
equations for solute transport is to have a significant effect on the rate of 
swelling, especially when the penetration numbers are high and the dif- 
fusional resistances dominate. In the next section we look at the types of 
strains and stresses that would be generated by this motion if we use a 
linear viscoelastic model for the material deformation. 

STRAIN AND STRESSES IN THE MATERIAL 

Mathematical Formulation 

Now that we have computed velocity fields and concentration profiles 
during the diffusion of the solute into the polymer, it is of interest to calculate 
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the strains and stresses that result from this motion. In particular, we are 
interested in the nonlinear viscoelastic response to the relatively large de- 
formations occurring during the process. Thus, we need to solve equations 
for the eulerian strain as well as the stress as computed from a corotational 
Maxwell model for the material. The stress due to material deformations is 
in general viscoelastic, and for illustrative purposes we can adopt a gen- 
eralized Maxwell model using upper convected derivatives for the de- 
formation14 

1 67 1 
G 6t  p, 

+ -7 = 2D _ _  (29) 

where G and are material constants corresponding to a Young's modulus 
and a viscosity, respectively. Here, the upper convected derivative is defined 
ad2 

and the tensor D is the rate of strain tensor 

(31) 
1 
2 

D = - (VV + V V ~ )  

As written, the rate of strain is in terms of the mass-average velocity. 
However, it is not clear whether in fact the stress should be related to the 
deformation or rate of strain of the polymer only. It is possible to  define a 
deformation stress based on the polymer rate of strain by an analogous 
equation, 

where 

with 

0, = d + vp.v 
Dt at 

1 
2 

D, = - (VV, + VV?) 

(34) 

(35) 

We can write eqs. (29) and (32) for the case of the one-dimensional defor- 
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mations obtained by the model in Table I. We can transform these equations 
to the -q = x, ( t )  - x coordinate system, and we can make the equations 
dimensionless using the characteristic values chosen in eq. (19). The end 
result of these manipulations is given in Table 11. 

The stresses have all been made dimensionless using G ,  so that 

De is the Deborah number, or the ratio of the relaxation time t R  = q/G for 
the polymer to  the characteristic time to for the fronts to  meet 

One of the characteristics of the deformations of polymers caused by solute 
transport is that they correspond to very large strains. For example, it is 
possible for the volume of a polymer to  increase by 30% or more. This is 
equivalent to  a strain of 0.6-0.7. As a result, small strain approximations 
may not be adequate, and it is best to  rely on s t ra ie ie lds  calculated for 
arbitrarily large deformations. Malvern14 reports an equation for the com- 
ponents of the eulerian strain tensor, that is, the strain as a function of 
spatial position and time, which takes the form 

D E  
- =  D - (E*VvT + V V * E )  Dt (38) 

TABLE I1 
Dimensionless Form of the Equations for Stress in the Polymer and in the Mixture 
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This is the strain associated with deformations for the mass-average veloc- 
ity. For the strain associated with the polymer only, we have 

DEP - -  - D - (E,*VvPT + Vv;E) 
Dt (39) 

In the one-dimensional case treated here, the only strain is along the x 
direction. If we take the equations for the x components of the strains, 
transform them to the moving frame, and make the equations dimensionless, 
we have for the mixture strain 

and for strain on the polymer we have 

It is understood that E and E, refer to the x components of the tensors E 
and E,. Since u,* and u* have much different dependencies on q", as well as 
different magnitudes, we can expect E and T* to be much different from Ep 
and T;. 

Before discussing the nature of the results, we have to apply initial and 
boundary conditions for the stress and strain equations. These can be ob- 
tained from some simple considerations of the swelling mechanism applied 
at the glasdrubber front. The strain acting on the mixture at the rub- 
bedglass interface is given by 

Eos = (p*)-'13 - 1 Eo, = (p*)'13 - 1 

and the strain acting on the polymer is 

EOsp = (p*)-'l3 (1 - o)-' - 1 Eo, = ( P * ) ~ / ~  (1 - o)-' 

The corresponding elastic stresses are 

=OJ 7gzy = =oy * 
Tosx = 

and 

.gszp = =,, 6 Y Y P  = *OJP 

The initial conditions for the stress are that the sample is stressed at the 
initial interface location by the elastic stresses given in eqs. (44) and (45). 
The physical picture is that, as soon as the polymer is exposed to the solute, 
an elastic swelling response is generated, with strains on the mixture and 
the polymer given by eqs. (42) and (43) and corresponding stresses given by 
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eqs. (44) and (45). As the swelling front moves, the magnitude of the stresses 
at the rubbedglass interface changes with time since p* and o change with 
time in eqs. (42) and (43). 

In Fig. 7 we see the calculated stresses on the mixture for various param- 
eter values. Note that as Pe increases, 72 in general decreases because of 
the smaller rate of transport of solute into the polymer. When Pe is small 
(<0.025), the value of the stress at the front is nearly constant in time since 
the concentration is nearly uniform in the swollen layer. For large Deborah 
numbers (De), the rubber-phase behavior is nearly elastic. The stress does 
not relax rapidly away from the front but remains high and can even increase 
with distance from the front if De is sufficiently high. For high values of 
both De and Pe, one can see a maximum near the external surface of the 
rubber. This maximum corresponds to the change in sign of the slope of u* 
versus q* in Fig. 6. This inflection, as we discussed previously, is a direct 
reflection of the convective terms. One can also see negative values of the 
stresses 7% close to the external surface. Because of the maximum in the 

0.2 

0.0 0.5 1 .o 1.5 2.0 

17' 

0.00 

Ty? 0.05 

0.10 ' I 

0.0 0.5 1 .o 1.5 2.0 

77' 
Fig. 7. Stress profiles based on mass-average velocity. Two curves corresponding to two 

different t* values for each set of parameter values. 
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mass-average velocity, these stresses can become compressive. The trans- 
verse stresses are also shown in Fig. 7. When the Deborah number or Pe is 
high, T;? does not decrease rapidly away from the glasdrubber interface. It 
can also have a minimum for the same reason that T& has a maximum, that 
is, the change in sign of du*/dq*. 

In Fig. 8 we show the strainE for a relatively high value of the penetration 
number. The strain increases away from the rubbedglass front because of 
the higher concentration of solute (higher swelling) near the soluteh-ubber 
interface. When Pe is small, then E is nearly constant with q* due to the 
nearly uniform concentration in the rubber phase. The polymer strain Ep 
is also shown in Fig. 8. Note that Ep is constant at the soluteh-ubber interface 
for all time because the material is fully swollen at  that point. The value 
of Ep decreases as the rubbedglass interface is approached. 

are shown in Fig. 9 for various values 
of the important parameters. When the relaxation times are small, the 
stresses relax to zero quickly, as expected; for large relaxation times the 

The stresses felt by the polymer 

0.0 I I I I 
0.0 0.5 1 .o 1.5 2.0 

7' 

0.0 0.5 1 .o 1.5 2.0 

11* 
Fig. 8. Strain profile for the mixture and the polymer at different values oft* (R  = 0.6, 

Pe = 2.5, and Am = 0.25). 
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Fig. 9. Stress fields for the polymer for various parameter values and several values oft*. 
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stresses do not have time to  relax during swelling. When the penetration 
number is high and there is a large diffusion resistance, the stresses decrease 
together with the concentration as q* goes from 0 to its value at the rub- 
bedglass interface. When the penetration number is small, the stresses go 
through a maximum as one approaches the rubberholute front because the 
initially highly stressed rubber has had enough time to relax. The relaxation 
time is shorter than the diffusion time, and this accounts for the maximum. 
Note that in the case of T&, there are no negative values as there are in 
72. A typical strain for the polymer E, is shown in Fig. 9. Note that the 
value of E, near the rubberholute interface is essentially independent of 
time since duz/dq* = 0 at that point. 

The stresses in the polymer only and in the mixture have quite different 
manifestations. One can treat the deformation of the material either as a 
deformation of the mixture of solute and polymer or as the deformation of 
the polymer only. According to thermodynamic theories of swelling in rub- 
bers, the important aspect of the stresses generated upon deformation is the 
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stress acting on the polymer chains. This would indicate that in doing dy- 
namic calculations in which the diffusive flux is coupled to the stress, it 
should be the stress generated in the polymer that governs the swelling 
process. 

CONCLUSIONS 

The convective terms in the continuity equation for the solute, in the 
constitutive equation for stress, and in the kinematic equation for the strain 
can have a significant influence on the calculated values of the thickness 
of the swollen layer and the front velocities. They can also influence sig- 
nificantly the computed stresses and strains. The stress and strain fields in 
the polymer are quite different from the corresponding fields for the mixture. 
As a result, in treating the kinematics of swelling polymers, great care must 
be exercised in defining explicitly the reference on which stresses and strains 
are to be computed. 

NOMENCLATURE 

Molecular diffusivity 
Dimensionless diffusivity 
Maximum diffusivity 
Deborah number 
Strain tensor for mixture 
Strain tensor for the polymer 
Strains in the mixture a t  the swelling front 
Elastic modulus 
Constant in swelling front velocity constitutive equation 
Mass of solute adsorbed 
Mass of glass per unit area of sample 
Dimensionless mass of solute adsorbed 
Penetration number 
Ratio of solvent to glass density 
Time 
Relaxation time for the polymer (p/G) 
Dimensionless time 
Characteristic time for fronts to meet 
Velocity in the x direction 
Dimensionless velocity 
Initial velocity of the front 
Velocity of the polymer 
Dimensionless velocity of the polymer 
Velocity of the solute 
x component of front velocity ( - w) 
Front velocities a t  rubbedglass and rubber/solute interfaces 
Dimensionless front velocities 
Position along the diffusion direction 
x components of the gladrubber and rubberkolute fronts 
Position normal to the diffusion direction 
Weight traction of solute in rubber 
Reference weight fraction of solute 
Maximum weight fraction of solute in rubber 
Stress tensor for the mixture 
Stress tensor for the polymer 
Coordinate relative to the rubberisolute interface 
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3' 
U t )  Thickness of swollen polymer 

Dimensionless coordinate relative to the rubber/solute interface 

P 
Ps 
PC 
6 

Constant in constitutive equation for diffusivity 
Density of solvent 
Density of glass 
Initial sample thickness 
Maximum difference in concentration of solute 
Dimensionless rubber density 
Rubber density 
Distance penetrated by the swelling front 
Dimensionless distance penetrated by the swelling front 
Viscosity 
Dimensionless stresses in mixture and in polymer 
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